Bubble Charts elegantly compress massive quantities of knowledge right into a single visualization, with bubble measurement including a 3rd dimension. Nevertheless, evaluating “earlier than” and “after” states is commonly essential. To deal with this, we suggest including a transition between these states, creating an intuitive consumer expertise.
Since we couldn’t discover a ready-made answer, we developed our personal. The problem turned out to be fascinating and required refreshing some mathematical ideas.
No doubt, essentially the most difficult a part of the visualization is the transition between two circles — earlier than and after states. To simplify, we concentrate on fixing a single case, which may then be prolonged in a loop to generate the mandatory variety of transitions.
To construct such a determine, let’s first decompose it into three components: two circles and a polygon that connects them (in grey).
Constructing two circles is kind of easy — we all know their facilities and radii. The remaining activity is to assemble a quadrilateral polygon, which has the next type:
The development of this polygon reduces to discovering the coordinates of its vertices. That is essentially the most attention-grabbing activity, and we are going to resolve it additional.
To calculate the space from a degree (x1, y1) to the road ax+y+b=0, the formulation is:
In our case, distance (d) is the same as circle radius (r). Therefore,
After multiplying either side of the equation by a**2+1, we get:
After shifting every thing to 1 aspect and setting the equation equal to zero, we get:
Since we now have two circles and must discover a tangent to each, we now have the next system of equations:
This works nice, however the issue is that we now have 4 doable tangent strains in actuality:
And we have to select simply 2 of them — exterior ones.
To do that we have to examine every tangent and every circle middle and decide if the road is above or beneath the purpose:
We’d like the 2 strains that each cross above or each cross beneath the facilities of the circles.
Now, let’s translate all these steps into code:
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import sympy as sp
from scipy.spatial import ConvexHull
import math
from matplotlib import rcParams
import matplotlib.patches as patches
def check_position_relative_to_line(a, b, x0, y0):
y_line = a * x0 + b
if y0 > y_line:
return 1 # line is above the purpose
elif y0 < y_line:
return -1
def find_tangent_equations(x1, y1, r1, x2, y2, r2):
a, b = sp.symbols('a b')
tangent_1 = (a*x1 + b - y1)**2 - r1**2 * (a**2 + 1)
tangent_2 = (a*x2 + b - y2)**2 - r2**2 * (a**2 + 1)
eqs_1 = [tangent_2, tangent_1]
answer = sp.resolve(eqs_1, (a, b))
parameters = [(float(e[0]), float(e[1])) for e in answer]
# filter simply exterior tangents
parameters_filtered = []
for tangent in parameters:
a = tangent[0]
b = tangent[1]
if abs(check_position_relative_to_line(a, b, x1, y1) + check_position_relative_to_line(a, b, x2, y2)) == 2:
parameters_filtered.append(tangent)
return parameters_filtered
Now, we simply want to seek out the intersections of the tangents with the circles. These 4 factors would be the vertices of the specified polygon.
Circle equation:
Substitute the road equation y=ax+b into the circle equation:
Resolution of the equation is the x of the intersection.
Then, calculate y from the road equation:
The way it interprets to the code:
def find_circle_line_intersection(circle_x, circle_y, circle_r, line_a, line_b):
x, y = sp.symbols('x y')
circle_eq = (x - circle_x)**2 + (y - circle_y)**2 - circle_r**2
intersection_eq = circle_eq.subs(y, line_a * x + line_b)
sol_x_raw = sp.resolve(intersection_eq, x)[0]
strive:
sol_x = float(sol_x_raw)
besides:
sol_x = sol_x_raw.as_real_imag()[0]
sol_y = line_a * sol_x + line_b
return sol_x, sol_y
Now we need to generate pattern knowledge to show the entire chart compositions.
Think about we now have 4 customers on our platform. We all know what number of purchases they made, generated income and exercise on the platform. All these metrics are calculated for two intervals (let’s name them pre and submit interval).
# knowledge era
df = pd.DataFrame({'consumer': ['Emily', 'Emily', 'James', 'James', 'Tony', 'Tony', 'Olivia', 'Olivia'],
'interval': ['pre', 'post', 'pre', 'post', 'pre', 'post', 'pre', 'post'],
'num_purchases': [10, 9, 3, 5, 2, 4, 8, 7],
'income': [70, 60, 80, 90, 20, 15, 80, 76],
'exercise': [100, 80, 50, 90, 210, 170, 60, 55]})
Let’s assume that “exercise” is the world of the bubble. Now, let’s convert it into the radius of the bubble. We may also scale the y-axis.
def area_to_radius(space):
radius = math.sqrt(space / math.pi)
return radius
x_alias, y_alias, a_alias="num_purchases", 'income', 'exercise'
# scaling metrics
radius_scaler = 0.1
df['radius'] = df[a_alias].apply(area_to_radius) * radius_scaler
df['y_scaled'] = df[y_alias] / df[x_alias].max()
Now let’s construct the chart — 2 circles and the polygon.
def draw_polygon(plt, factors):
hull = ConvexHull(factors)
convex_points = [points[i] for i in hull.vertices]
x, y = zip(*convex_points)
x += (x[0],)
y += (y[0],)
plt.fill(x, y, colour="#99d8e1", alpha=1, zorder=1)
# bubble pre
for _, row in df[df.period=='pre'].iterrows():
x = row[x_alias]
y = row.y_scaled
r = row.radius
circle = patches.Circle((x, y), r, facecolor="#99d8e1", edgecolor="none", linewidth=0, zorder=2)
plt.gca().add_patch(circle)
# transition space
for consumer in df.consumer.distinctive():
user_pre = df[(df.user==user) & (df.period=='pre')]
x1, y1, r1 = user_pre[x_alias].values[0], user_pre.y_scaled.values[0], user_pre.radius.values[0]
user_post = df[(df.user==user) & (df.period=='post')]
x2, y2, r2 = user_post[x_alias].values[0], user_post.y_scaled.values[0], user_post.radius.values[0]
tangent_equations = find_tangent_equations(x1, y1, r1, x2, y2, r2)
circle_1_line_intersections = [find_circle_line_intersection(x1, y1, r1, eq[0], eq[1]) for eq in tangent_equations]
circle_2_line_intersections = [find_circle_line_intersection(x2, y2, r2, eq[0], eq[1]) for eq in tangent_equations]
polygon_points = circle_1_line_intersections + circle_2_line_intersections
draw_polygon(plt, polygon_points)
# bubble submit
for _, row in df[df.period=='post'].iterrows():
x = row[x_alias]
y = row.y_scaled
r = row.radius
label = row.consumer
circle = patches.Circle((x, y), r, facecolor="#2d699f", edgecolor="none", linewidth=0, zorder=2)
plt.gca().add_patch(circle)
plt.textual content(x, y - r - 0.3, label, fontsize=12, ha="middle")
The output appears to be like as anticipated:
Now we need to add some styling:
# plot parameters
plt.subplots(figsize=(10, 10))
rcParams['font.family'] = 'DejaVu Sans'
rcParams['font.size'] = 14
plt.grid(colour="grey", linestyle=(0, (10, 10)), linewidth=0.5, alpha=0.6, zorder=1)
plt.axvline(x=0, colour="white", linewidth=2)
plt.gca().set_facecolor('white')
plt.gcf().set_facecolor('white')
# spines formatting
plt.gca().spines["top"].set_visible(False)
plt.gca().spines["right"].set_visible(False)
plt.gca().spines["bottom"].set_visible(False)
plt.gca().spines["left"].set_visible(False)
plt.gca().tick_params(axis="each", which="each", size=0)
# plot labels
plt.xlabel("Quantity purchases")
plt.ylabel("Income, $")
plt.title("Product customers efficiency", fontsize=18, colour="black")
# axis limits
axis_lim = df[x_alias].max() * 1.2
plt.xlim(0, axis_lim)
plt.ylim(0, axis_lim)
Pre-post legend in the correct backside nook to present viewer a touch, the right way to learn the chart:
## pre-post legend
# circle 1
legend_position, r1 = (11, 2.2), 0.3
x1, y1 = legend_position[0], legend_position[1]
circle = patches.Circle((x1, y1), r1, facecolor="#99d8e1", edgecolor="none", linewidth=0, zorder=2)
plt.gca().add_patch(circle)
plt.textual content(x1, y1 + r1 + 0.15, 'Pre', fontsize=12, ha="middle", va="middle")
# circle 2
x2, y2 = legend_position[0], legend_position[1] - r1*3
r2 = r1*0.7
circle = patches.Circle((x2, y2), r2, facecolor="#2d699f", edgecolor="none", linewidth=0, zorder=2)
plt.gca().add_patch(circle)
plt.textual content(x2, y2 - r2 - 0.15, 'Publish', fontsize=12, ha="middle", va="middle")
# tangents
tangent_equations = find_tangent_equations(x1, y1, r1, x2, y2, r2)
circle_1_line_intersections = [find_circle_line_intersection(x1, y1, r1, eq[0], eq[1]) for eq in tangent_equations]
circle_2_line_intersections = [find_circle_line_intersection(x2, y2, r2, eq[0], eq[1]) for eq in tangent_equations]
polygon_points = circle_1_line_intersections + circle_2_line_intersections
draw_polygon(plt, polygon_points)
# small arrow
plt.annotate('', xytext=(x1, y1), xy=(x2, y1 - r1*2), arrowprops=dict(edgecolor="black", arrowstyle="->", lw=1))
And at last bubble-size legend:
# bubble measurement legend
legend_areas_original = [150, 50]
legend_position = (11, 10.2)
for i in legend_areas_original:
i_r = area_to_radius(i) * radius_scaler
circle = plt.Circle((legend_position[0], legend_position[1] + i_r), i_r, colour="black", fill=False, linewidth=0.6, facecolor="none")
plt.gca().add_patch(circle)
plt.textual content(legend_position[0], legend_position[1] + 2*i_r, str(i), fontsize=12, ha="middle", va="middle",
bbox=dict(facecolor="white", edgecolor="none", boxstyle="spherical,pad=0.1"))
legend_label_r = area_to_radius(np.max(legend_areas_original)) * radius_scaler
plt.textual content(legend_position[0], legend_position[1] + 2*legend_label_r + 0.3, 'Exercise, hours', fontsize=12, ha="middle", va="middle")
Our closing chart appears to be like like this:
The visualization appears to be like very trendy and concentrates various data in a compact type.
Right here is the complete code for the graph:
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import sympy as sp
from scipy.spatial import ConvexHull
import math
from matplotlib import rcParams
import matplotlib.patches as patches
def check_position_relative_to_line(a, b, x0, y0):
y_line = a * x0 + b
if y0 > y_line:
return 1 # line is above the purpose
elif y0 < y_line:
return -1
def find_tangent_equations(x1, y1, r1, x2, y2, r2):
a, b = sp.symbols('a b')
tangent_1 = (a*x1 + b - y1)**2 - r1**2 * (a**2 + 1)
tangent_2 = (a*x2 + b - y2)**2 - r2**2 * (a**2 + 1)
eqs_1 = [tangent_2, tangent_1]
answer = sp.resolve(eqs_1, (a, b))
parameters = [(float(e[0]), float(e[1])) for e in answer]
# filter simply exterior tangents
parameters_filtered = []
for tangent in parameters:
a = tangent[0]
b = tangent[1]
if abs(check_position_relative_to_line(a, b, x1, y1) + check_position_relative_to_line(a, b, x2, y2)) == 2:
parameters_filtered.append(tangent)
return parameters_filtered
def find_circle_line_intersection(circle_x, circle_y, circle_r, line_a, line_b):
x, y = sp.symbols('x y')
circle_eq = (x - circle_x)**2 + (y - circle_y)**2 - circle_r**2
intersection_eq = circle_eq.subs(y, line_a * x + line_b)
sol_x_raw = sp.resolve(intersection_eq, x)[0]
strive:
sol_x = float(sol_x_raw)
besides:
sol_x = sol_x_raw.as_real_imag()[0]
sol_y = line_a * sol_x + line_b
return sol_x, sol_y
def draw_polygon(plt, factors):
hull = ConvexHull(factors)
convex_points = [points[i] for i in hull.vertices]
x, y = zip(*convex_points)
x += (x[0],)
y += (y[0],)
plt.fill(x, y, colour="#99d8e1", alpha=1, zorder=1)
def area_to_radius(space):
radius = math.sqrt(space / math.pi)
return radius
# knowledge era
df = pd.DataFrame({'consumer': ['Emily', 'Emily', 'James', 'James', 'Tony', 'Tony', 'Olivia', 'Olivia', 'Oliver', 'Oliver', 'Benjamin', 'Benjamin'],
'interval': ['pre', 'post', 'pre', 'post', 'pre', 'post', 'pre', 'post', 'pre', 'post', 'pre', 'post'],
'num_purchases': [10, 9, 3, 5, 2, 4, 8, 7, 6, 7, 4, 6],
'income': [70, 60, 80, 90, 20, 15, 80, 76, 17, 19, 45, 55],
'exercise': [100, 80, 50, 90, 210, 170, 60, 55, 30, 20, 200, 120]})
x_alias, y_alias, a_alias="num_purchases", 'income', 'exercise'
# scaling metrics
radius_scaler = 0.1
df['radius'] = df[a_alias].apply(area_to_radius) * radius_scaler
df['y_scaled'] = df[y_alias] / df[x_alias].max()
# plot parameters
plt.subplots(figsize=(10, 10))
rcParams['font.family'] = 'DejaVu Sans'
rcParams['font.size'] = 14
plt.grid(colour="grey", linestyle=(0, (10, 10)), linewidth=0.5, alpha=0.6, zorder=1)
plt.axvline(x=0, colour="white", linewidth=2)
plt.gca().set_facecolor('white')
plt.gcf().set_facecolor('white')
# spines formatting
plt.gca().spines["top"].set_visible(False)
plt.gca().spines["right"].set_visible(False)
plt.gca().spines["bottom"].set_visible(False)
plt.gca().spines["left"].set_visible(False)
plt.gca().tick_params(axis="each", which="each", size=0)
# plot labels
plt.xlabel("Quantity purchases")
plt.ylabel("Income, $")
plt.title("Product customers efficiency", fontsize=18, colour="black")
# axis limits
axis_lim = df[x_alias].max() * 1.2
plt.xlim(0, axis_lim)
plt.ylim(0, axis_lim)
# bubble pre
for _, row in df[df.period=='pre'].iterrows():
x = row[x_alias]
y = row.y_scaled
r = row.radius
circle = patches.Circle((x, y), r, facecolor="#99d8e1", edgecolor="none", linewidth=0, zorder=2)
plt.gca().add_patch(circle)
# transition space
for consumer in df.consumer.distinctive():
user_pre = df[(df.user==user) & (df.period=='pre')]
x1, y1, r1 = user_pre[x_alias].values[0], user_pre.y_scaled.values[0], user_pre.radius.values[0]
user_post = df[(df.user==user) & (df.period=='post')]
x2, y2, r2 = user_post[x_alias].values[0], user_post.y_scaled.values[0], user_post.radius.values[0]
tangent_equations = find_tangent_equations(x1, y1, r1, x2, y2, r2)
circle_1_line_intersections = [find_circle_line_intersection(x1, y1, r1, eq[0], eq[1]) for eq in tangent_equations]
circle_2_line_intersections = [find_circle_line_intersection(x2, y2, r2, eq[0], eq[1]) for eq in tangent_equations]
polygon_points = circle_1_line_intersections + circle_2_line_intersections
draw_polygon(plt, polygon_points)
# bubble submit
for _, row in df[df.period=='post'].iterrows():
x = row[x_alias]
y = row.y_scaled
r = row.radius
label = row.consumer
circle = patches.Circle((x, y), r, facecolor="#2d699f", edgecolor="none", linewidth=0, zorder=2)
plt.gca().add_patch(circle)
plt.textual content(x, y - r - 0.3, label, fontsize=12, ha="middle")
# bubble measurement legend
legend_areas_original = [150, 50]
legend_position = (11, 10.2)
for i in legend_areas_original:
i_r = area_to_radius(i) * radius_scaler
circle = plt.Circle((legend_position[0], legend_position[1] + i_r), i_r, colour="black", fill=False, linewidth=0.6, facecolor="none")
plt.gca().add_patch(circle)
plt.textual content(legend_position[0], legend_position[1] + 2*i_r, str(i), fontsize=12, ha="middle", va="middle",
bbox=dict(facecolor="white", edgecolor="none", boxstyle="spherical,pad=0.1"))
legend_label_r = area_to_radius(np.max(legend_areas_original)) * radius_scaler
plt.textual content(legend_position[0], legend_position[1] + 2*legend_label_r + 0.3, 'Exercise, hours', fontsize=12, ha="middle", va="middle")
## pre-post legend
# circle 1
legend_position, r1 = (11, 2.2), 0.3
x1, y1 = legend_position[0], legend_position[1]
circle = patches.Circle((x1, y1), r1, facecolor="#99d8e1", edgecolor="none", linewidth=0, zorder=2)
plt.gca().add_patch(circle)
plt.textual content(x1, y1 + r1 + 0.15, 'Pre', fontsize=12, ha="middle", va="middle")
# circle 2
x2, y2 = legend_position[0], legend_position[1] - r1*3
r2 = r1*0.7
circle = patches.Circle((x2, y2), r2, facecolor="#2d699f", edgecolor="none", linewidth=0, zorder=2)
plt.gca().add_patch(circle)
plt.textual content(x2, y2 - r2 - 0.15, 'Publish', fontsize=12, ha="middle", va="middle")
# tangents
tangent_equations = find_tangent_equations(x1, y1, r1, x2, y2, r2)
circle_1_line_intersections = [find_circle_line_intersection(x1, y1, r1, eq[0], eq[1]) for eq in tangent_equations]
circle_2_line_intersections = [find_circle_line_intersection(x2, y2, r2, eq[0], eq[1]) for eq in tangent_equations]
polygon_points = circle_1_line_intersections + circle_2_line_intersections
draw_polygon(plt, polygon_points)
# small arrow
plt.annotate('', xytext=(x1, y1), xy=(x2, y1 - r1*2), arrowprops=dict(edgecolor="black", arrowstyle="->", lw=1))
# y axis formatting
max_y = df[y_alias].max()
nearest_power_of_10 = 10 ** math.ceil(math.log10(max_y))
ticks = [round(nearest_power_of_10/5 * i, 2) for i in range(0, 6)]
yticks_scaled = ticks / df[x_alias].max()
yticklabels = [str(i) for i in ticks]
yticklabels[0] = ''
plt.yticks(yticks_scaled, yticklabels)
plt.savefig("plot_with_white_background.png", bbox_inches="tight", dpi=300)
Including a time dimension to bubble charts enhances their means to convey dynamic knowledge modifications intuitively. By implementing easy transitions between “earlier than” and “after” states, customers can higher perceive traits and comparisons over time.
Whereas no ready-made options had been obtainable, growing a customized strategy proved each difficult and rewarding, requiring mathematical insights and cautious animation strategies. The proposed methodology will be simply prolonged to numerous datasets, making it a priceless software for Knowledge Visualization in enterprise, science, and analytics.